
Phil Mercurio
Thyrd.org

Tcl'2007
New Orleans

Poet: Prototype Object 
Extension for Tcl

poet.sourceforge.net



2

Poet

Poet: Prototype Object Extension for Tcl
Dynamic, prototype-based inheritance
One-way constraints
Persistence
Assimilation of Tk widgets via introspection
Current status: stable

Poetics: Poet Integrated Construction Set
End-user modification of a running Poet program
Type annotations
Object and code editors
Goal: provide some of the functionality of an IDE to the user
Current status: experimental, handy for Poet developer



3

Inspiration and History

Self (Ungar and Smith)
Live, directly-manipulated objects
Prototypes

Garnet and Amulet (Myers et al.)
One-way constraints
Desktop application platform

History:
1994: theObjects (Juergen Wagner)
1996: ported to Tcl7.5/Tk4.1
1997: redesign Poet 1
1999: Poet 2 begun
2007: Poet 2.0.0 released



4

C vs. Tcl

Poet started out as a C extension
Primordial Poet object Object implemented in C

Low overhead in choosing C vs. Tcl for a method
1/3 of Object's methods are C
Constraint network is C

C code ~5000 lines
~4300 lines

~13000 lines
~25000 lines

Tcl code, non-GUI
Tcl code, GUI handwritten
Tcl code, GUI autogenerated



5

Object Creation and Destruction

Objects are constructed by their parent
Object construct NewObject

Objects destroy themselves
$self destruct

No garbage collection, override destruct to clean up
An object may have goodbye scripts which are automatically 
invoked upon destruction

modelObj addGoodbye {uiObj unrender modelObj}
Tcl's autoloading used to load object source when first 
referenced

First line in source refers to parent, so parent autoloaded
Multiple inheritance via method mixin, which also autoloads



6

Anonymous Names

If the argument to construct ends in *, an anonymous 
name is returned

Guaranteed to be unique in this interpreter
If it ends in @, a persistent version is returned

Guaranteed to be unique in this persistent storage
Object not persistent yet, need to mixin Thing

% Object construct *
*a
% Object construct @
@a
% @a mixin Thing



7

Prototype Inheritance

No classes, any object may be a parent for any other object
Objects have multiple dimensions (methods, slots, formulas, 
etc.) subject to inheritance

Search order: object, parent, mixins, ancestors

anObject

aParent aMixin

grandparent

Object

1

5

4

32



8

Methods

A method is a Tcl procedure with target object as $self
No method chaining, but any method can be called on any 
object using as
Complete definition of an object that announces its demise:

Object construct VerboseObject

VerboseObject method destruct {} {
puts stderr “$self destructing”
$self as [VerboseObject parent] destruct

}



9

Slots

Object attributes are set or retrieved via the method slot
Slot names beginning with _ are private and are not inherited
Only public slots are persistent

Slots may be designated active for reading and/or writing
A corresponding method is invoked when slot read or written

Write method may reject proposed value
The method may be on a different object than the slot value

% alpha slot test1 42
42
% alpha slot test1
42
% alpha method test1> {x} {puts “Set test1 to $x”}
% alpha slotOn test1 >
Set test1 to 42
% alpha slot test1 24
Set test1 to 24
24



10

Persistence

Objects are made persistent by mixing in Thing
ThingPool is used to specify the storage 

Either a directory or a single file using tcllib's VFS
Each Thing written as a Tcl script
Things are autoloaded when referenced

Setup for persistence:
ThingPool setFile [lindex $::argv 0]
ThingPool slot writable 1
ThingPool open

rename exit crash
proc exit {{returnCode 0}} {

ThingPool close
crash $returnCode

}



11

Constraints

A slot's value may be constrained via slotConstrain
A formula matching the slot is sought via inheritance

A formula is arbitrary Tcl code
Like a method, $self is available and a value is returned
References to other slots are recorded as dependencies

btn formula state {
expr {[scl slot value] == 0 ? “disabled” : “normal”}

}

btn slotConstrain state



12

Controlling Constraints

Automatic dependencies can lead to irrelevancies
Poet limitConstraints <object>

Only descendants of <object> participate in network
Poet sideEffect <script>

Ignores slot accesses inside <script>
Formulas that take too long negatively impact liveness
A formula may indicate it's not done yet with a special error
error “suspend <token>”
<token> is any unique string, e.g. an object name
No value set on dependent slot

Object resumeFormula <token>
Continuation of work on dependent slot

Object completeFormula <token> <value>
Computation of <value> complete, set slot



13

Type Annotations

Poet slots are Tcl variables and can hold any value
A slot may have a type annotation indicating the sorts of 
values it may contain
alpha slot test1 42
alpha type test1 <integer>

Types are subject to inheritance, a slot's value and type may 
reside on different objects
Not a traditional type system

Slot values are not made to conform to their types
No type inferencing to validate expressions

Poetics uses type annotations when introspecting Poet 
objects



14

Assimilation

Megawidgets supported by assimilating Tk widgets into Poet 
objects
Assimilation performed by preprocessor using Tk 
introspection

Only needs to be rerun if widget API changes

Tk_Button slot background #d9d9d9
Tk_Button method background> {value} {
    set p [$self primary]
    if {$p ne ""} {
        $p configure -background $value
    }
}
Tk_Button type background <color>
Tk_Button slotOn background >



15

ProtoWidget

Poet assimilates Tk, BWidget, TkTable, and BLT
Widget slots may participate in constraint network
All widgets descendant from ProtoWidget
ProtoWidget construct takes additional arguments of 
the form -slotname value

Result is cosmetically similar to Tk
Additional slot layout contains geometry manager and 
options

If layout begins with -, assumed to be pack options
Otherwise, first word must be grid, place, etc.

Assimilated widgets may be augmented with additional 
handwritten methods
A few custom widgets included



16

Example
package require Poet

Tk_Scale construct scl . \
    -from -7 -to 7 \
    -orient horizontal \
    -layout {-side top}
Tk_Button construct btn . \
    -text "Reset" \
    -layout {-side top} \
    -command "scl slot value 0"

btn formula state {
    expr {[scl slot value] == 0 ?
        "disabled" : "normal"}
}
btn slotConstrain state



17

Poetics Types

Poetics consists of tools to directly manipulate Poet objects
Not enabled by default, meant for use by “gardeners”

We begin by defining types for editing Tk widgets, used to 
present correct editing tool in object editor

Object
<color>
<cursor>
<font>
<boolean>
<real>
<integer>
<real> -1.0 1.0 0.1
<integer> 0
<choice> alpha beta gamma



18

Object Editor



19

Problems and Future Work

Poet is very tolerant of errors, perhaps too tolerant
Accessing undefined slots returns {}, not an error
All slots and methods (even private ones) accessible from any 
object
Most errors trapped by dialog that allows user to ignore error

Browsing and editing of existing objects supported, not 
creation of new objects

Only autoloaded code editable in code browser
Slot editors for more types need to be implemented

Layout editor particularly tricky
Code editor could be enhanced with programming-by-
demonstration features



20

Demo

At Tcl'2007, these slides were shown via a slideshow 
program written in Poet.  The program displayed a widget on 
this slide that could be inspected via Poetics.  That demo 
program is available in the sample/ folder of the Poet 
release at

poet.sourceforge.net


